Reduction of Boundary Value Problem to Possio Integral Equation in Theoretical Aeroelasticity

نویسندگان

  • Ariyaputhirar V. Balakrishnan
  • Marianna A. Shubov
چکیده

The present paper is the first in a series of works devoted to the solvability of the Possio singular integral equation. This equation relates the pressure distribution over a typical section of a slender wing in subsonic compressible air flow to the normal velocity of the points of a wing downwash . In spite of the importance of the Possio equation, the question of the existence of its solution has not been settled yet. We provide a rigorous reduction of the initial boundary value problem involving a partial differential equation for the velocity potential and highly nonstandard boundary conditions to a singular integral equation, the Possio equation. The question of its solvability will be addressed in our forthcoming work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of the Generalized Possio Equation in 2d Subsonic Aeroelasticity

We study solvability of the generalized Possio integral equation a tool in analysis of a boundary value problem in 2D subsonic aeroelasticity with the Kutta-Joukowski condition ”zero pressure discontinuity” ψ(x, 0, t) = 0 on the complement of a finite interval in the whole real line R. The corresponding problem with boundary condition on finite intervals adjacent to the ”chord” was considered i...

متن کامل

On a Boundary Value Problem in Subsonic Aeroelasticity and the Cofinite Hilbert Transform

We study a boundary value problem in subsonic aeroelasticity and introduce the cofinite Hilbert transform as a tool in solving an auxiliary linear integral equation on the complement of a finite interval on the real line R.

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008